Nitrogen regulation of protein–protein interactions and transcript levels of GlnK PII regulator and AmtB ammonium transporter homologs in Archaea
نویسندگان
چکیده
Gene homologs of GlnK PII regulators and AmtB-type ammonium transporters are often paired on prokaryotic genomes, suggesting these proteins share an ancient functional relationship. Here, we demonstrate for the first time in Archaea that GlnK associates with AmtB in membrane fractions after ammonium shock, thus, providing a further insight into GlnK-AmtB as an ancient nitrogen sensor pair. For this work, Haloferax mediterranei was advanced for study through the generation of a pyrE2-based counterselection system that was used for targeted gene deletion and expression of Flag-tagged proteins from their native promoters. AmtB1-Flag was detected in membrane fractions of cells grown on nitrate and was found to coimmunoprecipitate with GlnK after ammonium shock. Thus, in analogy to bacteria, the archaeal GlnK PII may block the AmtB1 ammonium transporter under nitrogen-rich conditions. In addition to this regulated protein-protein interaction, the archaeal amtB-glnK gene pairs were found to be highly regulated by nitrogen availability with transcript levels high under conditions of nitrogen limitation and low during nitrogen excess. While transcript levels of glnK-amtB are similarly regulated by nitrogen availability in bacteria, transcriptional regulators of the bacterial glnK promoter including activation by the two-component signal transduction proteins NtrC (GlnG, NRI) and NtrB (GlnL, NRII) and sigma factor σ(N) (σ(54) ) are not conserved in archaea suggesting a novel mechanism of transcriptional control.
منابع مشابه
Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB.
The Amt proteins are ammonium transporters that are conserved throughout all domains of life, being found in bacteria, archaea and eukarya. In bacteria and archaea, the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate enzyme activity and gene expression in response to the intracellular nitro...
متن کاملAntagonism of PII signalling by the AmtB protein of Escherichia coli.
Escherichia coli AmtB is a member of the MEP/Amt family of ammonia transporters found in archaea, eubacteria, fungi, plants and animals. In prokaryotes, AmtB homologues are co-transcribed with a PII paralogue, GlnK, in response to nitrogen limitation. Here, we show that AmtB antagonizes PII signalling through NRII and that co-expression of GlnK with AmtB overcomes this antagonism. In cells lack...
متن کاملAssociation and dissociation of the GlnK–AmtB complex in response to cellular nitrogen status can occur in the absence of GlnK post-translational modification
PII proteins are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and their regulatory effect is achieved by direct interaction with their target. Many, but by no means all, PII proteins are subject ...
متن کاملThe Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation.
During development of root nodules, Rhizobium bacteria differentiate inside the invaded plant cells into N2-fixing bacteroids. Terminally differentiated bacteroids are unable to grow using the ammonia (NH3) produced therein by the nitrogenase complex. Therefore, the nitrogen assimilation activities of bacteroids, including the ammonium (NH4+) uptake activity, are expected to be repressed during...
متن کاملGlnR-mediated regulation of nitrogen metabolism in Lactococcus lactis.
We show that the nitrogen regulatory protein GlnR of Lactococcus lactis represses transcription of the amtB-glnK, glnRA, and glnPQ operons. This likely occurs through a conserved DNA motif, 5'-TGTNA-7N-TNACAT-3', and takes place in response to extracellular glutamine and ammonium. GlnR-independent repression of amtB-glnK is mediated by the pleiotropic nitrogen regulator CodY.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013